364 research outputs found

    Double coherence resonance in neuron models driven by discrete correlated noise

    Full text link
    We study the influence of correlations among discrete stochastic excitatory or inhibitory inputs on the response of the FitzHugh-Nagumo neuron model. For any level of correlation the emitted signal exhibits at some finite noise intensity a maximal degree of regularity, i.e., a coherence resonance. Furthermore, for either inhibitory or excitatory correlated stimuli a {\it Double Coherence Resonance} (DCR) is observable. DCR refers to a (absolute) maximum coherence in the output occurring for an optimal combination of noise variance and correlation. All these effects can be explained by taking advantage of the discrete nature of the correlated inputs.Comment: 4 pages, 3 figures in eps, to appear in Physical Review Letter

    Integration of Direction Cues Is Invariant to the Temporal Gap between Them

    Get PDF
    Many decisions involve integration of evidence conferred by discrete cues over time. However, the neural mechanism of this integration is poorly understood. Several decision-making models suggest that integration of evidence is implemented by a dynamic system whose state evolves toward a stable point representing the decision outcome. The internal dynamics of such point attractor models render them sensitive to the temporal gaps between cues because their internal forces push the state forward once it is dislodged from the initial stable point. We asked whether human subjects are as sensitive to such temporal gaps. Subjects reported the net direction of stochastic random dot motion, which was presented in one or two brief observation windows (pulses). Pulse strength and interpulse interval varied randomly from trial to trial. We found that subjects' performance was largely invariant to the interpulse intervals up to at least 1 s. The findings question the implementation of the integration process via mechanisms that rely on autonomous changes of network state. The mechanism should be capable of freezing the state of the network at a variety of firing rate levels during temporal gaps between the cues, compatible with a line of stable attractor states

    Balancing innovation and access: India’s pharmaceutical patent laws

    Get PDF
    Writing in Science, LSE’s Kenneth Shadlen, Bhaven Sampat (Columbia) and Tahir Amin (Harvard) debate the implications of an upcoming Indian Supreme Court decision on pharmaceutical patents for variants of existing compounds and its impact on the accessibility of affordable drugs

    Auto and crosscorrelograms for the spike response of LIF neurons with slow synapses

    Full text link
    An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons (LIFs) receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced in \cite{Mor+04}. These two functions define the firing variability and firing synchronization between neurons, and are of much importance for understanding neuron communication.Comment: 5 pages, 3 figure

    The Cost of Accumulating Evidence in Perceptual Decision Making

    Get PDF
    Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic programming, we were able to estimate the cost of making additional observations per unit of time from two monkeys and six humans in a reaction time (RT) random-dot motion discrimination task. Surprisingly, we find that the cost is neither zero nor constant over time, but for the animals and humans features a brief period in which it is constant but increases thereafter. In addition, we show that our theory accurately matches the observed reaction time distributions for each stimulus condition, the time-dependent choice accuracy both conditional on stimulus strength and independent of it, and choice accuracy and mean reaction times as a function of stimulus strength. The theory also correctly predicts that urgency signals in the brain should be independent of the difficulty, or stimulus strength, at each trial

    Response of Spiking Neurons to Correlated Inputs

    Full text link
    The effect of a temporally correlated afferent current on the firing rate of a leaky integrate-and-fire (LIF) neuron is studied. This current is characterized in terms of rates, auto and cross-correlations, and correlation time scale τc\tau_c of excitatory and inhibitory inputs. The output rate νout\nu_{out} is calculated in the Fokker-Planck (FP) formalism in the limit of both small and large τc\tau_c compared to the membrane time constant τ\tau of the neuron. By simulations we check the analytical results, provide an interpolation valid for all τc\tau_c and study the neuron's response to rapid changes in the correlation magnitude.Comment: 4 pages, 3 figure

    Multiple decisions about one object involve parallel sensory acquisition but time-multiplexed evidence incorporation.

    Get PDF
    The brain is capable of processing several streams of information that bear on different aspects of the same problem. Here, we address the problem of making two decisions about one object, by studying difficult perceptual decisions about the color and motion of a dynamic random dot display. We find that the accuracy of one decision is unaffected by the difficulty of the other decision. However, the response times reveal that the two decisions do not form simultaneously. We show that both stimulus dimensions are acquired in parallel for the initial ∼0.1 s but are then incorporated serially in time-multiplexed bouts. Thus, there is a bottleneck that precludes updating more than one decision at a time, and a buffer that stores samples of evidence while access to the decision is blocked. We suggest that this bottleneck is responsible for the long timescales of many cognitive operations framed as decisions

    Timescales of spike-train correlation for neural oscillators with common drive

    Full text link
    We examine the effect of the phase-resetting curve (PRC) on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy, super-threshold stimulation. We use linear response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem, and contrast the results for Type I vs. Type II models and across the different timescales over which spike correlations can be assessed. We find that, on long timescales, Type I oscillators transfer correlations much more efficiently than Type II oscillators. On short timescales this trend reverses, with the relative efficiency switching at a timescale that depends on the mean and standard deviation of input currents. This switch occurs over timescales that could be exploited by downstream circuits

    Motif Statistics and Spike Correlations in Neuronal Networks

    Get PDF
    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network model of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second-order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state
    • …
    corecore